

ROWLAND WATER DISTRICT

2016 Consumer Confidence Report

KNOW YOUR WATE

This report contains important information about your drinking water. Translate it or speak with someone who understands it.

Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo ó hable con alguien que lo entienda bien. 本報告包含有關您飲用水的重要資訊。 將它翻譯為中文或向能夠理解其內容之 人士諮詢。

Phúc trình này có các chi tiết quan trọng về nước uống của quý vị. Hãy dịch ra ngôn ngữ của quý vị hoặc hỏi người hiểu tiếng Anh. Itong ulat ay may mahalagang impormasyon tungkol sa tubig na iniinom ninyo. Ipasalin ito o kausapin ang isang tao na nakakaintindi nito.

이 보고서는 당신이 마시는 물에 관한 중 요한 정보를 포함합니다. 번역을 하시든지 또는 이를 이해할 수 있 는 분과 상담하십시요.

Taking Effective Action FOR SUSTAINABLE PROGRESS

It is my pleasure to bring you Rowland Water District's 2016 Water Quality Report. I am pleased to report that Rowland Water once again upheld its mission to deliver safe, clean drinking water to customers at

the lowest possible cost. Water quality testing detailed in this report shows that your drinking water meets and exceeds state and federal health and safety standards.

Our responsibility to our customers also includes planning for future demands and droughts. The last year presented some unique water supply challenges as the drought continued and ratepayers were called on to meet state-mandated conservation measures.

Rowland Water transports, maintains and delivers water to about 55,000 people in the unincorporated areas of Rowland Heights, La Puente, Hacienda Heights, and in the cities of Industry and West Covina. The District relies mostly on imported drinking water supplies from Northern California and the Colorado River, which are delivered by our wholesaler, Metropolitan Water District of Southern California and Three Valleys Municipal Water District. In addition, the District has the ability to deliver local groundwater from the Central and Main Basin groundwater supplies. To reduce costs, Rowland Water has expanded the use of impaired groundwater and recycled water for irrigation, construction and other uses that do not require treated drinking water.

In 2016, the District tested 936 water samples for regulated and unregulated contaminants and impurities. All the drinking

water we serve meets requirements set by the U.S. Environmental Protection Agency and State Water Resources Control Board. The results of the testing can be found in this report.

As we have since 1953, Rowland Water District remains committed to delivering the highest quality water to our customers. We will continue to safeguard our resources and maintain facilities so we can provide the high level of service you have come to expect.

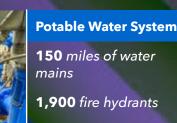
om

Tom Coleman, General Manager

Water Services You Can Depend On

When Rowland Water District was established in 1953, it provided water services to 200 local ranchers and farmers. Today, the District serves 55,000 people through 13,500 service connections. We invite you to get to know us and learn how Rowland Water delivers a high-quality water supply and the highest level of service to our customers.

Potable and Recycled Water Reservoirs



17 Potable water reservoirs - Total capacity of 48 million gallons

Able to serve14 million gallons per day

3 days worth of water in case of emergency

1 recycled water reservoir - Total capacity of 5 million gallons

13,500 customer service connections

8 pump stations

22 pumps

Rowland Water Recap: Improving System Reliability

At Rowland Water District (Rowland Water), we are committed to resourcefully managing your water supply and efficiently delivering vital water services to the community. To accomplish these efforts, the District closely monitors infrastructure, regularly assesses system efficiency, and plans capital improvement projects to increase the dependability of services for years to come. Investing in the future is a crucial component of the District's goal of long-term stability, and is a significant element of responsible water management.

Rowland Water is proud to report updates on several capital improvement projects:

Nogales Grade Separation & Fullerton Grade Separation

The Nogales Grade Separation project, completed in November 2016, increased water delivery throughout the District's service area, further diversifying the water supply and increasing source reliability. The completion of the Fullerton Grade Separation is scheduled for 2020.

Whittier Booster Pump Station

In January 2017, Rowland Water activated the Whittier Booster Pump Station and Pipeline. The project increased the District's production of groundwater in the Main San Gabriel Basin, in agreement with the District's Source Water Diversification Plan.

Tomich Booster Pump Station

Rowland Water made critical improvements to the aging infrastructure and obsolete electrical equipment at the Tomich Booster Station in June 2017 to minimize service interruptions and improve water production.

Interested in learning more about Rowland Water District first-hand?

Check out our new District video which explains how your water supplier has transformed from originally serving a primarily agricultural community to a service provider of almost 55,000 people. Visit www.rowlandwater.com/ historic-video to view the short video. It's also playing in the District Lobby for the customers to enjoy!

IN THE CLASSROOM

For more than five years, Rowland Water District has had the privilege in participating in local education programs, teaching students all about the importance of their water supply and how to protect it.

This year, the District took its comprehensive education curriculum to a whole new level with new mascots, songs to sing in the classroom and custom plush toys! Just a few years ago we were conducting four presentation a year, and now our education team is in local classrooms as many as four times per week! Rowland Water would like to thank our local schools for sharing in our commitment to promote conservation. To book an inclassroom presentation, or learn more visit our website at www. rowlandwater.com/education

Meet Willy & Wendy Water Our New Plush Water Mascots!

2016 CONSUMER CONFIDENCE REPORT:

Information About Your Water

Established in 1953, Rowland Water District originally supplied water to about 200 ranchers and farmers, and now serves approximately 55,000 residents in the unincorporated portions of Rowland Heights, La Puente, Hacienda Heights, and the cities of Industry and West Covina.

The District is governed by a publicly elected Board of Directors with five members, each representing a specific division of the service area. Maintaining the highest quality and most reliable potable water supply, as well as establishing District policy and the annual budget, are the Board's primary functions.

Board meetings are scheduled for the second Tuesday of each month (unless otherwise noted) and held at the District office at 3021 Fullerton Road, Rowland Heights, CA 91748. Board meetings begin at 6 p.m. Agendas are posted at the District office 72 hours in advance of the meeting and on the District's website at **www.rowlandwater.com**.

Comprehensive water quality reporting is done on an annual basis and describes the sources of potable water, as well as the supply's composition and how it compares to state and federal health and safety standards.

Rowland Water District is committed to providing safe drinking water and strives to maintain the highest level of public confidence within the community. The District works hard to keep customers well informed on all issues related to water supply, quality and conservation.

Sources of Water

In December 2002, Metropolitan Water District completed a source water assessment of its Colorado River and State Water Project supplies. Colorado River water is considered to be most vulnerable to the effects of recreation, urban and stormwater runoff, increasing urbanization in the watershed, and wastewater. The State Water Project is considered to be most vulnerable to the effects of urban and stormwater runoff, wildlife, agriculture, recreation, and wastewater. A copy of the assessment can be obtained by contacting Metropolitan Water District at (213) 217-6850. In addition to these sources, Rowland Water District stores supplemental water in Main San Gabriel Groundwater Basin and Central Basin.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency's (U.S. EPA's) Safe Drinking Water Hotline at (800) 426-4791.

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground it dissolves naturally-occurring minerals and, in some cases, radioactive materials, and can pick up substances resulting from the presence of animals or from human activity.

2016 CONSUMER CONFIDENCE REPORT:

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occuring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants that can be naturallyoccuring or the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. DDW regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Some people may be more vulnerable to contaminants found in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or

other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available by calling the Safe Drinking Water Hotline at (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Rowland Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at http://www.epa.gov/safewater/lead.

2016 SAMPLE RESULTS

Unless otherwise noted, the data presented in this table is from testing completed January 1 - December 31, 2016. The state requires the District to monitor for certain contaminants less than once per year because the concentrations are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old. Unregulated contaminant monitoring helps EPA and the DDW determine where certain contaminants occur and whether they need to be regulated.

For specific questions regarding this report or any additional questions related to District drinking water, please contact Eric Hall, Operations Superintendent, at (562) 697-1726 or email info@rowlandwater.com.

PRIMARY ST	ANDAR	DS								
Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Regional Groundwater (LHHCWD)	Units	Major Sources in Drinking Water
CLARITY										
Combined Filter Effluent Turbidity (a)	TT=1 TT (a)	NA	NA	Highest % <0.3	0.3 100%	0.08 100%	0.64 100%	NC	NTU %	Soil Runoff
MICROBIOLOGIC	AL									
Total Coliform Bacteria (b) (Total Coliform Rule)	5%	(0)	NA		RV	/D Distribution Syster	m-Wide 0%		%	Naturally present in the environment
Fecal Coliform and E.coli (b) (Total Coliform Rule)	(b)	(0)	NA		RV	/D Distribution Syster	m-Wide 0%		(b)	Human and animal fecal waste
Heterotrophic Plate Count (e)	TT	NA	NA	Range Average	TT	TT	TT	NC	CFU/mL	Naturally present in the environment
Cryptosporidium	TT	(0)	NA	Range Average	ND	ND	ND	NC	Oocysts/ 200 L	Human and animal fecal waste
Giardia	TT	(0)	NA	Range Average	ND	ND	ND	NC	Cysts/ 200 L	Human and animal fecal waste
INORGANIC CHEMICALS										
Aluminum (d)	1000	600	50	Range	77 - 220				ppb	Residue from water treatment
				Average Range	159	ND ND - 2.4	ND	NC ND - 3.8	ppb	process; natural deposits; erosion Residue from water treatment
Arsenic	10	.004	2	Average	ND	1.47	ND	2.6	ppo	process; natural deposits; erosion
Barium	1000	1000	100	Range Average	144	ND	ND	NA	ppb	Discharge of oil drilling waste and from metal refineries; erosion of natural deposits
				Range			ND - 1.1			Runoff leaching from natural
Chromium VI (f)	10	0.02	1	Average	ND	ND	0.55	NC	ppb	deposits; discharge from industrial waste factories
Copper (d) (f)	AL=1.3	0.3	0.05		RWD Distribution System RWD Distribution System RWD Distribution System	-Wide 90th Percer	ntile Level = 0.110	rel = 0	ррт	Internal corrosion of household pipes; erosion of natural deposits
Fluoride	2	1	0.1	Range Average	0.6 - 1.0 0.7	0.24	0.59	0.1 - 0.3 0.2	ppm	Erosion of natural deposits; water additive that promotes strong teeth
Lead (f)	AL=15	2	5	, v	RWD Distribution System-Wide - 32 Samples Collected					Internal corrosion of household pipes; erosion of natural deposits
Nitrate (as N) (c)	10	10	0.4	Range Average	ND	ND - 1.2 0.52	2.4 - 3.0 2.65	2.4 - 4.3 3.1	ppm	Runoff and leaching from fertilizer use; sewage; erosion of natural deposits

2016 SAMPLE RESULTS

PRIMARY STANDARDS (Continued)

RADIOLOGICALS										
Gross Alpha Particle Activity	15	(0)	3	Range Average	ND - 4 ND	ND	ND	ND - 3.1 0.8	pCi/L	Erosion of natural deposits
Gross Beta Particle Activity (h)	50	(0)	4	Range Average	4.0 - 6.0	ND	NR	NA	pCi/L	Decay of natural and man-made deposits
Radium 226	NA	.05	1	Range Average	ND	Due 2022	0.147	ND - 0.05 0.02	pCi/L	Erosion of natural deposits
Radium 228	NA	0.019	1	Range Average	ND	Due 2022	0.001	ND - 0.16 0.0	pCi/L	Erosion of natural deposits
Strontium-90	8	0.35	2	Range Average	ND	0.055	NR	NC	pCi/L	Decay of natural and man-made deposits
Tritium	20,000	400	1,000	Range Average	ND	147	NR	NC	pCi/L	Decay of natural and man-made deposits
Uranium	20	0.43	1	Range Average	2 - 3	Due 2019	1.4 - 2.1 1.92	1.3 - 3.4 1.9	pCi/L	Erosion of natural deposits
DISINFECTION BY-PRODUCTS, DISINFECTANT RESIDUALS, AND DISINFECTION BY-PRODUCTS PRECURSORS										
Total Trihalomethanes (TTHM) (n)	80	NA	1	Range Highest	RWD Distribution System-Wide 15.1 - 58.4 RWD Distribution System-Wide 37.40					By-product of drinking water disinfection
Haloacetic Acids (HAA5)	60	NA	1 (g)	Range Hightest	RWD Distribution System-Wide 2.4 - 26.4 RWD Distribution System-Wide 14.73					By-product of drinking water disinfection
Total Chlorine Residual	[4]	[4]	NA	Range Average	RWD Distribution System-Wide 2.00 - 2.61 RWD Distribution System-Wide 2.32					Drinking water disinfectant added for treatment

100

11 146

SECONDARY STANDARDS - AESTHETIC STANDARDS

Parameter	Secondary MCL	PHG (MCLG)	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Regional Groundwater (LHHCWD)	Regional Ground Water (LHHCWD)	Units	Major Sources in Drinking Water	
Aggressiveness Index (Corrosivity)	Non-corrosive	-E63	50	Range Average	12.2 - 12.5 12.4	12.35	NR	12.4 12.4	ppb	Natural/industrially-infuenced balance of hydrogen/carbon/oxygen in water	
Aluminum (d)	200	600	50	Range	77 - 220				dqq	Erosion of natural deposits; residual from some surface water treatment	
	200	000	50	Average	159	ND	ND	NC	ppb	processes	
Chloride	500	NA	NA	Range				98 - 120	ppm	Runoff / leaching from natural	
				Average	103	88	8.1	104.5		deposits; seawater influence	
Color	15	NA	NA	Range Average	1	ND	ND	1.0 - 3.0 2.8	units	Naturally occurring organic materials	
Copper (d) (f)	1	0.3	0.05		RWD Distribution System RWD Distribution System RWD Distribution System	-Wide 32 Samples -Wide 90th Percer	ppm	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives			
Foaming Agents-MBAS	500	NA	NA	Range Average	ND	0.2 - 0.28 0.22	ND	NC	TON	Municipal and industrial waste discharges	
Odor Threshold (k)	3	NA	1	Range Average	2	1	1	1 1	TON	Naturally occurring organic materials	
Specific Conductance	1,600	NA	NA	Range Average	1020 - 1050 1035	520 - 630 575	410	900 - 1000 950	µS/cm	Substances that form ions when in water; seawater influence	
Sulfate	500	NA	0.5	Range Average	256 - 259 258	80	28	150 150	ppm	Runoff / leaching from natural deposits; industrial wastes	
Total Dissolved Solids (TDS)	1,000	NA	NA	Range Average	650 - 659 655	360	344 - 451 395	540 - 620 587.5	ppm	Runoff / leaching from natural deposits	
Turbidity (monthly) (a)	5	NA	NA	Range Average	ND	ND	ND	ND - 0.7 0.14	NTU	Soil runoff	

2016 SAMPLE RESULTS

Othe

Other Parameters											
Alkalinity	NA	NA	NA	Range Average	113 - 124 118	61 - 92 78	160	160 - 210 185	ppm	Measure of water quality	
Boron	NL=1,000	NA	100	Range Average	150	210 - 270 240	180	NA	ppb	Runoff / leaching from natural deposits; industrial wastes	
Calcium	NA	NA	NA	Range Average	75 - 79 77	26 - 31 28.5	50	79 - 100 92.3	ppm	Measure of water quality	
Chlorate	NL=800	NA	20	Range Average	60	ND	NR	NC	ppb	By-product of drinking water chlorination; industrial processes	
Chromium VI (j)	NA	0.02	1	Range Average	ND	1	ND - 1.1 0.55	NC	ppb	Industrial waste discharge; could be naturally present as well	
Corrosivity (i) (as Aggressiveness Index)	NA	NA	NA	Range Average	12.4 - 12.5 12.5	12.35	NR	12.0 - 13.0 12.5	Al	Elemental balance in water; affected by temperature, other factors	
Corrosivity (I) (as Saturation Index)	NA	NA	NA	Range Average	0.54 - 0.60 0.57	0.50	NR	NC	SI	Elemental balance in water; affected by temperature, other factors	
1,4 Dioxane	NA	NA	NA	Range Average	NC	NC	NC	1.2 - 1.4 1.3	SI	Industrial Solvent Contamination	
Total Hardness (as CaCO3)	NA	NA	NA	Range Average	293 - 306 300	120	160	260 - 340 307.5	ppm	Measure of water quality	
Total Hardness (Grains per Gallon)	NA	NA	NA	Range Average	17.31 - 17.78 17.54	5.85		15.20 - 19.88 17.84	gpg	Measure of water quality	
Magnesium	NA	NA	NA	Range Average	25 - 27 26	10	8.4	17 - 20 18.3	ppm	Measure of water quality	
рН	NA	NA	NA	Range Average	8.1	8.6 - 8.63 8.62	7.9	7.4 - 8.1	pH units	Measure of water quality	
Potassium	NA	NA	NA	Range Average	5.0 - 5.1 5.1	2.7	1.4	4.2 - 4.9 4.5	ppm	Measure of water quality	
Radon (k)	NA	NA	100	Range Average	ND	NR	22	NC	ppm	Naturally occurring, comes from decay of uranium in nearly all soils	
Sodium	NA	NA	NA	Range Average	104 - 106 105	81	ND	60 - 77 68.8	ppm	Measure of water quality	
Total Organic Carbon (TOC)	TT	NA	0.30	Range Average	1.7 - 2.8 2.5	1.6 - 2.8 2.2	ND	0.6	ppm	Various natural and man-made sources	
Vanadium	NL=50	AL=50	3	Range Average	ND	7.1 - 9.6 8.35	NR	NC	ppb	Naturally occurring; Industrial waste discharge	
N-nitrosodimethylamine (NDMA)	NL=10	3	2	Range Average	ND	0.001	NR	NA	ppt	By-product of drinking water chloramination; industrial processes	
(NDIVIA)				Average			NR			chioramination, industrial processes	

-

And I wanted

-

NOTES

(a) The turbidity level of the filtered water shall be less than or equal to 0.3 NTU in 95% of the measurements taken each month and shall not exceed 1 NTU at any time. Turbidity is a measure of the cloudiness of the water and is an indicator of treatment performance. The monthly average and range of turbidity are listed in the Secondary Standards section and are based on the plant effluents.

(b) Results are based on Rowland Water District's distribution system's highest monthly percent positives. 936 samples were analyzed in 2016. The average monthly percentage was 0.4 %. Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform positive. Fecal coliform/E. coli MCLs: The occurrence of 2 consecutive total coliform positive samples, one of which contains fecal coliform/E. coli, constitutes an acute MCL violation. The MCL was not violated.

(c) State MCL is 45 mg/L as Nitrate, which equals 10.16 mg/L as N.

(d) Aluminum, Thiobencarb, Copper, and MTBE have both primary and secondary standards.

(e) Pour Plate Technique, 48-hour incubation at 35°C, monthly averages. (f) Lead and Copper samples are required to be collected once every three years during the months of June - September. Sample results are from 2015.

(g) DLR=1.0 ppb for each HAA5 analyte (dichloracetic acid, trichloracetic acid, monobromoacetic acid, and dibromoacetic acid) except for monochloroacetic acid which has a DLR =2.0 ppb.

(h) The gross beta particle activity MCL is 4 millirem/year annual dose equivalent to the total body or any internal organ. The screening level is 50 pCi/L.

(i) Al measures the aggressiveness of water transported through pipes. Water with Al <10.0 is highly aggressive and would be very corrosive to almost all materials found in a typical water system. Al ≥ 12.0 indicates non-aggressive water. Al between 10.0 and 11.9 indicates moderately aggressive water.

(j) Chromium VI reporting level for MWD is 0.03 ppb.

(k) Metropolitan Water District has developed a flavor-profile analysis method that can more accurately detect odor occurrences. For more information contact MWD at (213) 217-6850. (I) SI measures the tendency for a water to precipitate or dissolve calcium carbonate (a natural mineral in water). Water with SI <-2.0 is highly corrosive and would be corrosive to almost all materials found in a typical water system. SI between -2.0 to 0 indicates a balanced water and SI >0.5 is scale forming.

(m) Minimum reporting levels are as stipulated in the Federal UCMR 2. List 1 - Assessment Monitoring consists of 10 chemical contaminants for which standard analytical methods were available. List 2 - Screening Survey consists of 15 contaminants for which new analytical methods were used. All analysis conducted by contract laboratories. Values listed in State DLR column are Federal mimimum reporting levels.

(n) RWD was in compliance with all provisions of the Stage 2 Disinfectants and Disinfection By-Products Rule (D/DBPR). Compliance was based on the highest Locational Running Annual Average (LRAA) of all data collected at distribution system-wide monitoring locations.

GLOSSARY

Primary Drinking Water Standard (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the United States Environmental Protection Agency.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

KEY TO ABBREVIATIONS

Average CFU	Average of all Samples Collected Colony Forming Units	NR NTU	Not Required Nephelometric Turbidity Units
DLR	Detection Limits for the Purposes of Reporting	ppb	Parts per Billion (µg/L)
µS/cm	MicroSiemen per Centimeter	ppm	Parts per Million (mg/L)
MPN	Most Probable Number	ppt	Parts per Trillion
NA	Not Applicable	pCi/L	PicoCuries per Liter
NC	Not Collected	Range	Lowest to Highest Sampling Results
ND	None Detected	SI	Saturation Index (Langelier)

ROWLAND WATER DISTRICT

John A. Rowland, V Administration and Operations Facility

CONTACT US021 FULLERTON ROAD

ROWLAND WATER DISTRICT | 3021 Fullerton Road, Rowland Heights, CA 91748 | (562) 697-1726Office Hours: Monday - Thursday 8:00 a.m. to 5:30 p.m. | Friday 8:00 a.m. to 4:30 p.m. Closed on Alternating FridaysAfter Hours Emergency Service: (562) 697-1726WWW.ROWLANDWATER.COM

BOARD OF DIRECTORS

Szu Pei Lu-Yang - Division V President

Robert W. Lewis - Division IV Vice President

Teresa P. Rios - Division I Director Anthony J. Lima - Division II Director John E. Bellah - Division III Director

Tom Coleman General Manager

OUR MISSION

Bound by our core values – Accountability, Communication and Teamwork – we are committed to providing the highest level of service to our customers

DEDICATED	۵	RELIABLE	۵	OUTST	TANDING	۵	PROFESS	IONAL
S E		R		V	Ι		С	E

For questions or more informatino about this report, please contact Eric Hall at (562) 697-1726, or visit us online at RowlandWater.com